
Estimating Dynamic Games

Sanjog Misra
Anderson UCLA

Structural Workshop 2013

Misra Estimating Dynamic Games



Estimating Dynamic Discrete Games

In this workshop we have gone through a lot.

The main topics include...

1 Foundations: Structural Models (Reiss), Causality and
Identification (Goldfarb), Instruments (Rossi), Data (Mela)

2 Methods: Static Demand Models (Sudhir), Single Agent
Dynamics: Theory and Econometrics (Hitsch), Static Games
(Ellickson)

What you should have gleaned from their talks is that the
estimation of structural models requires

Data+ Theory + Econometrics

The estimation of dynamic games combines elements from all
of the above talks and requires considerable expertise in
handling data, game theory, econometrics and computational
methods.
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Estimating Dynamic Discrete Games

We’ve already learned how to estimate single-agent (SA)
dynamic discrete choice (DDC) models

Two main approaches

1 Full solution: NXFP (Rust, 1987)

2 Two-Step: CCP (Hotz and Miller, 1993)

In both cases, the underlying SA optimization problem
involved agent’s solving a dynamic programming (DP)
problem

With games, agent’s must solve an inter-related system of DP
problems

Their actions must be optimal given their beliefs & their
beliefs must be correct on average (or at least self-confirming)

As you can imagine, computing equilibria can be pretty
complicated...
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Estimating Dynamic Discrete Games

Ericson & Pakes (ReStud, 95) and Pakes & McGuire (Rand,
94) provide a framework for computing equilibria to dynamic
games.

More recently Goettler and Gordon (JPE 2012) provide an
alternative approach

However, using the original PM algorithm, solving a
reasonably complex EP-style dynamic game even once is
computationally demanding (if not impossible)

Estimating the model using NFXP is essentially intractable

There’s also the issue of multiple equilibria
The “incompleteness” this introduces can make it diffi cult to
construct a proper likelihood/objective function, further
complicating a NFXP approach

Two-step “CCP”estimation provides a work-around that
circumvents the iterative fixed point calculation, “solving”
both problems
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Estimating Dynamic Discrete Games

CCP estimators were first developed by Hotz & Miller (HM,
1993) & Hotz, Miller, Sanders & Smith (HMS2, 1994) for
DDC models
Four sets of authors (contemporaneously) suggested adapting
these methods to games:
1 Aguirregabiria and Mira (AM) (Ema, 2007),
2 Bajari, Benkard, and Levin (BBL) (Ema, 2007),
3 Pakes, Ostrovsky, and Berry (POB) (Rand, 2007), &
4 Pesendorfer and Schmidt-Dengler (PSD) (ReStud, 2008),

We’ll talk about AM & BBL
AM extends HM to games
BBL extends HMS2 to games

Both are based on the framework suggested in Rust (94)
More recent contributions are Blevins et al. (2012) and
Arcidiacono and Miller (Ema, 2011)
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Aguirregabiria and Mira (Ema, 2007)
“Sequential Estimation of Dynamic Discrete Games”

Model

A dynamic discrete game of incomplete information.

Motivated by stylized model of retail chain competition.

Let dt be a vector of demand shifters in period t.

N firms operate in the market, indexed by i ∈ {1, 2, ...,N}.
In each period t, firms decide simultaneously how many
outlets to operate - choosing from the discrete set
A = {0, 1, ..., J}

The decision of firm i in period t is ait ∈ A
The vector of all firms’actions is at ≡ (a1t , a2t , ..., aNt )
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Model

Firms are characterized by two vectors of state variables that
affect profitability: xit and εit

xt ≡ (dt , x1t , x2t , ..., xNt ) is common knowledge, but
εt ≡ (ε1t , ε2t , ..., εNt ) is privately observed by firm i

Π̃i (at , xt , εit ) is firm i’s per-period profit function.

Assume {xt , εt} follows a controlled Markov process with
transition probability p (xt+1, εt+1|at , xt , εt ) , which is
common knowledge
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Model

Each firm chooses its number of outlets to maximize expected
discounted intertemporal profits,

E
{ ∞

∑
s=t

βs−t Π̃i (at , xt , εit ) | xt , εit
}

where β ∈ (0, 1) is the (known) discount factor.
The primitives of the model are the profit functions Π̃i (·),
the transition probability p (·|·), and β

AM make the following set of assumptions...
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Assumptions
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Strategies and Bellman Equations

AM also assume that firms play stationary Markov strategies

Let σ = {σi (x , εi )} be a set of strategy functions (decision
rules), one for each firm, with

σi : X × RJ+1 → A

Associated with a set of strategy functions σ, define a set of
conditional choice probabilities Pσ = {Pσ

i (ai |x)} such that

Pσ
i (ai |x) ≡ Pr (σi (x , εi ) = ai |x) =

∫
I {σi (x , εi ) = ai} gi (εi ) d εi

which represent the expected behavior of firm i from the point
of view of the rest of the firms (& us!), when firm i follows σ.
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Expected profits

Let πσ
i (ai , x) be firm i’s current expected profit from

choosing alternative ai while the other firms follow σ.
By the independence of private information,

πσ
i (ai , x) = ∑

a−i∈AN−1

(
∏
j 6=i
Pσ
j (a−i [ j ] |x)

)
Πi (ai , a−i , x)

where a−i [ j ] is the j th firm’s element in the vector of actions
players other than i

Let Ṽ σ
i (x , εi ) be the value of firm i if it behaves optimally

now and in the future given that the other firms follow σ.
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Value Functions

By Bellman’s principle of optimality, we can write

Ṽ σ
i (x , εi ) = maxai∈A

{
πσ
i (ai , x ) + εi (ai ) + β ∑

x ′∈X

[∫
Ṽ σ
i
(
x ′, ε′i

)
gi
(
ε′i
)
d ε′i

]
f σ
i
(
x ′ |x , ai

)}
(1)

where f σ
i (x

′|x , ai ) is the transition probability of x conditional
on firm i choosing ai and the other firms following σ:

f σ
i
(
x ′ |x , ai

)
= ∑
a−i∈AN−1

(
∏
j 6=i
P σ
j (a−i [j ] |x )

)
f
(
x ′ |x , ai , a−i

)

AM prefer to work with the value functions integrated over
the private information variables.

Let V σ
i (x) be the integrated value function∫

V σ
i (x , εi ) gi (dεi )
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Choice-Specific Value Functions

Based on this definition

V σ
i (x ) =

∫
V σ
i (x , εi ) gi (d εi )

and the Bellman equation from above

Ṽ σ
i (x , εi ) = maxai∈A

{
πσ
i (ai , x ) + εi (ai ) + β ∑

x ′∈X

[∫
Ṽ σ
i
(
x ′, ε′i

)
gi
(
ε′i
)
d ε′i

]
f σ
i
(
x ′ |x , ai

)}
(1)

we can obtain the integrated Bellman equation

V σ
i (x) =

∫
max
ai∈A
{vσ
i (ai , x) + εi (ai )} gi (d εi )

where
vσ
i (ai , x) ≡ πσ

i (ai , x) + β ∑
x ′∈X

V σ
i
(
x ′
)
f σ
i
(
x ′|x , ai

)
which are often referred to as choice-specific value functions.
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Markov Perfect Equilibria

Now it’s time to enforce the fact that σ describes equilibrium
behavior (i.e. it’s a best response)

DEFINITION: A stationary Markov perfect equilibrium (MPE)
in this game is a set of strategy functions σ∗ such that for any
firm i and any (x , εi ) ∈ X × RJ+1

σ∗i (x , εi ) = argmax
ai∈A

{
vσ∗
i (ai , x) + εi (ai )

}
Ultimately, an equation (somewhat) like this will be the basis
of estimation
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Markov Perfect Equilibria

Note that πσ
i ,V

σ
i , & f

σ
i only depend on σ through P, so AM

switch notation to πPi ,V
P
i , & f

P
i so they can represent the

MPE in probability space.

Let σ∗ be a set of MPE strategies and let P∗ be the
probabilities associated with these strategies

P∗ (ai |x) =
∫
I {ai = σ∗i (x , εi )} gi (εi ) dεi

Equilibrium probabilities are a fixed point (P∗ = Λ (P∗)),
where, for any vector of probabilities
P,Λ (P) = {Λi (ai |x ;P−i )} and

Λi (ai |x ;P−i ) =
∫
I

(
ai = arg max

ai∈A

{
vP
∗

i (a, x) + εi (a)
})

gi (εi ) d εi

The functions Λi are best response probability functions
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Markov Perfect Equilibria

The equilibrium probabilities solve the coupled fixed-point
problems defined by

V σ
i (x) =

∫
max
ai∈A
{vσ
i (ai , x) + εi (ai )} gi (d εi ) (2)

and

Λi (ai |x ;P−i ) =
∫
I

(
ai = arg max

ai∈A

{
vP
∗

i (a, x) + εi (a)
})

gi (εi ) d εi

(3)

Given a set of probabilities P:

The value functions V Pi are solutions of the N Bellman
equations in (2), and

Given these value functions, the best response probabilities are
defined by the RHS of (3).
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An Alternative Best Response Mapping

It’s easier to work with an alternative best response mapping
(in probability space) that avoids the solution of the N
dynamic programming problems in (2).

The evaluation of this mapping is computationally much
simpler than the evaluation of the mapping Λ (P), and it will
prove more convenient for the estimation of the model.

Let P∗ be an equilibrium and let V P
∗

1 ,V P
∗

2 , ...,V P
∗

N be firms’
value functions associated with this equilibrium.
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Alternative Best Response Mapping

Because equilibrium probabilities are best responses, we can
rewrite the Bellman equation

V σ
i (x ) =

∫
max
ai∈A
{v σ
i (ai , x ) + εi (ai )} gi (d εi ) (2)

as

V P
∗

i (x ) = ∑
ai∈A

P ∗i (ai |x )
[
πP

∗
i (ai , x ) + e

P ∗
i (ai , x )

]
+ β ∑

x ′∈X
V P

∗
i
(
x ′
)
f P
∗ (
x ′ |x

)
(4)

where f P
∗
(x ′|x) is the transition probability of x induced by

P∗

eP
∗

i (ai , x) is the expectation of εi (ai ) conditional on x and
on alternative ai being optimal for player i
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Alternative Best Response Mapping

Note that eP
∗

i (ai , x) is a function of gi and P∗i (x) only

The functional form depends on the probability distribution gi
For example, if the εi (ai ) are iid T1EV, then

eP
∗

i (ai , x) ≡ E (εi (a) |x , σ∗i (x , εi ) = ai ) = γ−σ ln (Pi (ai |x))

where γ is Euler’s constant & σ is the logit dispersion
parameter.
Taking equilibrium probabilities as given, expression (4)

V P
∗

i (x ) = ∑
ai∈A

P ∗i (ai |x )
[
πP

∗
i (ai , x ) + e

P ∗
i (ai , x )

]
+ β ∑

x ′∈X
V P

∗
i
(
x ′
)
f P
∗ (
x ′ |x

)

describes the vector of values V P
∗

i as the solution of a system
of linear equations, which can be written in vector form as(

I − βF P
∗)
V P

∗
i = ∑

ai∈A
P ∗i (ai ) ∗

[
πP

∗
i (ai ) + e

P ∗
i (ai )

]
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Alternative Best Response Mapping

Let Γi (P∗) ≡ {Γi (x ;P∗) : x ∈ X} be the solution to this
system of linear equations, such that V P

∗
i (x) = Γi (x ;P∗) .

For arbitrary probabilities P, the mapping

Γi (P ) =
(
I − βF P

∗)−1 {
∑
ai∈A

P ∗i (ai ) ∗
[
πP

∗
i (ai ) + e

P ∗
i (ai )

]}
(5)

can be interpreted as a valuation operator.
An MPE is then a fixed point Ψ (P) ≡ {Ψi (ai |x ;P)} where

Ψi (ai |x ;P ) =
∫
I

(
ai = arg max

ai ∈A

{
πPi (a, x ) + εi (a) + β ∑

x ′∈X
Γi
(
x ′;P

)
f Pi
(
x ′ |x , a

)})
gi (εi ) d εi

(6)

By definition, an equilibrium vector P∗ is a fixed point of Ψ.
AM’s Representation Lemma establishes that the reverse is
also true.

Equation (6) will be the basis of estimation
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Estimation

Assume the researcher observes M geographically separate
markets over T periods, where M is large and T is small.

The primitives {Πi , gi , f , β : i ∈ I} are known to the
researcher up to a finite vector of structural parameters
θ ∈ Θ ⊂ R |Θ|.

β is assumed known (it’s very diffi cult to estimate)

We now incorporate θ as an explicit argument in the
equilibrium mapping Ψ.
Let θ0 ∈ Θ be the true value of θ in the population

Under Assumption 2 (i.e., conditional independence), the
transition probability function f can be estimated from
transition data using a standard maximum likelihood method
and without solving the model.
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Assumptions on DGP
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Maximum Likelihood Estimation

Define the pseudo likelihood function

QM (θ,P) =
1
M

M

∑
m=1

T

∑
t=1

N

∑
i=1
lnΨi (aimt |xmt ;P, θ)

where P is an arbitrary vector of players’choice probabilities.

Consider first the hypothetical case of a model with a unique
equilibrium for each possible value of θ ∈ Θ.
Then the maximum likelihood estimator (MLE) of θ0 can be
defined from the constrained multinomial likelihood

θ̂MLE = argmax
θ∈Θ

QM (θ,P) subject to P = Ψ (θ,P)
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MLE

However, with multiple equilibria the restriction P = Ψ (θ,P)
does not define a unique vector P, but a set of vectors.
In this case, the MLE can be defined as

θ̂MLE = arg max
θ∈Θ

 sup
P∈(0,1)N |X |

QM (θ,P) subject to P = Ψ (θ,P)


Thus, for each candidate θ, we need to compute all the
vectors P that constitute equilibria (given θ) and select the
one with the highest value of QM (θ,P) .

At present, there are no known methods that can do so
(robustly).

Therefore, AM introduce a class of pseudo maximum
likelihood estimators.
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Pseudo Maximum Likelihood (PML) Estimation

The PML estimators try to minimize the number of
evaluations of Ψ for different vectors of players’probabilities
P.

Suppose that we know the population probabilities P0 and
consider the (infeasible) PML estimator

θ̂ = argmax
θ∈Θ

QM
(
θ,P0

)
Under standard regularity conditions, this estimator is√
M-CAN, but infeasible since P0 is unknown.

However, if we can obtain a
√
M-consistent nonparametric

estimator of P0, then we can define the feasible two-step PML
estimator

θ̂2S = argmax
θ∈Θ

QM
(
θ, P̂0

)
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PML

√
M-CAN of P̂0 (+ regularity conditions) are suffi cient to

guarantee that the PML estimator is
√
M-CAN.

There are two good reasons to care about this estimator

1 It deals with the indeterminacy problem associated with
multiple equilibria (it’s robust)

2 Furthermore, repeated solutions of the dynamic game are
avoided, which can result in significant computational gains
(it’s simple)
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PML: Drawbacks

However, the two-step PML has some drawbacks

1 Its asymptotic variance depends on the variance Σ of the
nonparametric estimator P̂0.

Therefore, it can be very ineffi cient when Σ is large.

2 For the sample sizes available in actual applications, the
nonparametric estimator of P0 can be very imprecise (small
sample bias).

There’s a curse of dimensionality here...

3 For some models, it’s impossible to obtain consistent
nonparametric estimates of P0.

e.g. models with unobserved market characteristics.

To address these issues, AM introduce the Nested Pseudo
Likelihood estimator.
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Nested Pseudo Likelihood (NPL) Method

NPL is a recursive extension of the two-step PML estimator.

Let P̂0 be a (possibly inconsistent) initial guess of the vector
of players’choice probabilities.

Given P̂0, the NPL algorithm generates a sequence of
estimators

{
θ̂K : K ≥ 1

}
, where the K-stage estimator is

defined as
θ̂K = argmax

θ∈Θ
QM

(
θ, P̂K−1

)
and the probabilities

{
P̂K : K ≥ 1

}
are obtained recursively as

P̂K = Ψ
(
θ̂K , P̂K−1

)
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NPL

If the initial guess P̂0 is a consistent estimator, all elements of
the sequence of estimators

{
θ̂K : K ≥ 1

}
are consistent

However, AM are interested in the properties of the estimator
in the limit (if it converges)

If the sequence
{

θ̂K , P̂K
}
converges, its limit

(
θ̂, P̂

)
is such

that
θ̂ maximizes QM

(
θ, P̂

)
and P̂ = Ψ

(
θ̂, P̂

)
and any pair that does so is a NPL fixed point.

AM show that a NPL fixed point always exists and, if there is
more than one, the one with the highest value of the pseudo
likelihood is a consistent estimator

Of course, it may be very diffi cult to find multiple roots
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NPL

NPL preserves the two main advantages of PML

1 It’s feasible in models with multiple equilibria, and

2 It minimizes the number of evaluations of the mapping Ψ for
different values of P

Furthermore

1 It’s more effi cient than either infeasible or two-step PML
(because it imposes the MPE condition in sample)

2 It reduces the finite sample bias generated by imprecise
estimates of P0

3 It doesn’t require initially consistent P̂0’s (so it can
accommodate unobserved heterogeneity)

AM show how to extend NPL to settings with permanent
unobserved heterogeneity, but let’s skip that & look at some
Monte Carlos
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Monte Carlos

Consider a simple entry/exit example where 5 firms can
operate at most 1 store, so ait ∈ {0, 1}
Variable profit is given by

θRS ln (Smt )− θRN ln
(
1+∑j 6=i ajmt

)
where Smt is the size of market m in period t, and θRS & θRN
are parameters to be estimated
The profit function of an active firm is

Π̃imt (1) = θRS ln (Smt )− θRN ln
(
1+∑j 6=i ajmt

)
− θFC ,i − θEC (1− aim,t−1)+ εimt

where θFC ,i is fixed cost, θEC is entry cost, and εimt ∼ T1EV
The profit function of an inactive firm is simply

Π̃imt (0) = εimt
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Monte Carlos

ln (Smt ) follows a discrete first order Markov process, with
known transition matrix and finite support {1, 2, 3, 4, 5}
Fixed operating costs are

θFC ,1 = −1.9, θFC ,2 = −1.8, θFC ,3 = −1.7, θFC ,4 = −1.6, θFC ,5 = −1.5

so that firm 5 is most effi cient and firm 1 is least effi cient.

θRS = 1 and β = .95 throughout, but AM will vary θRN and
θEC
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Monte Carlos

The space of common knowledge state variables (Smt , at−1)
has 25 × 5 = 160 cells.
There’s a different vector of CCPs for each firm, so the
dimension of the CCP vector for all firms is 5× 160 = 800.
For each experiment, they compute a MPE.

The equilibrium is obtained by iterating the best response
probability mapping starting with a 800× 1 vector of choice
probabilities (guesses) - (e.g. Pi (ai = 1|x) = .5 ∀x , i)
They can then calculate the steady state distribution and
generate fake data.

Table II presents some descriptive statistics associated with
the MPE of each experiment.
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Markov Perfect Equilibria for each experiment
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Monte Carlos

They then calculate the two-step PML and NPL estimators
using the following choices for the initial vector of probabilities

1 The true vector of equilibrium probabilities P0

2 Nonparametric frequency estimates

3 Logits (for each firm) with the log of market size and
indicators of incumbency status for all firms as explanatory
variables, and

4 Independent random draws from a U(0, 1) r.v.

Tables IV and V summarize the results
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Monte Carlo Results
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Monte Carlo Results
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Discussion of Results

The NPL algorithm always converged to the same estimates
(regardless of the value of P̂0)

The algorithm converged faster when initialized with logit
estimates

The 2S-Freq estimator is highly biased in all experiments,
although its variance is sometimes smaller than the NPL and
2S-True estimators.

It’s main drawback is small sample bias...

The NPL estimator performs very well relative to the 2S-True
both in terms of variance and bias.

In all the experiments, the most important gains associated
with the NPL estimator occur for the entry cost parameter.
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Motivation for BBL

A big drawback of the AM approach (and PSD & POB as
well) is that it’s designed for discrete controls (and discrete
states)

A big selling point of BBL is that it can

However,

1 It’s not completely clear that AM can’t be extended to
continuous controls and states (see, e.g., Arcidiacono and
Miller (2011))

2 The way BBL “handles” continuous controls is probably
infeasible (unless there are no structural shocks to investment)

3 BBL’s objective function can be diffi cult to optimize, so you
might want to mix & match a bit.

Let’s look now at how BBL works...
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Background for BBL (HMSS)

The original idea for the methods proposed in BBL came from
Hotz, Miller, Sanders and Smith (1994)

They proposed a two-step (really 3) approach

1 Estimate the transition kernels f (s ′|s, a) and CCPs P (a|s)
from the data

2 Approximate V
(
s |P̂
)
using Monte-Carlo approaches

3 Construct and maximize an objective function to obtain
parameters

Let’s look how this might work...

Misra Estimating Dynamic Games



Forward Simulation (HMSS)

For each state (s ∈ S) draw a sequence of R future paths as
follows

1 Draw iid shocks ε0 (a)
2 Compute optimal policies P̂ (a|s0) and pick action a0 (ε0, s0)
3 Compute payoffs Ur0 = u (s0, a0; θ) + ε0 (a0)
4 Draw next period state s1˜f̂ (s ′|s0, a0) and repeat for T
iterations.

We can use these to construct Value functions...
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Value Function (HMSS)

At some T we stop the forward simulation and use the fact
that

V r (s0) =
T

∑
t=0

βtU rt

To construct

V̂
(
s0|P̂

)
=
1
R

R

∑
r=1

V r (s0)

We can then obtain an estimator using
A Pseudo Likelihood, GMM or Least Squares

max
θ

∑
t

∑
i
ait lnΨ

(
ait |sit , V̂

)
min

θ
∑
i

(
∑
t

(
ait −Ψ

(
ait |sit , V̂

)
Zit
))

Ω−1
(

∑
t

(
ait −Ψ

(
ait |sit , V̂

)
Zit
))′

min
θ

(
P̂ (a|s)−Ψ

(
a|s, V̂

))′
W−1

(
P̂ (a|s)−Ψ

(
a|s, V̂

))
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Bajari, Benkard, and Levin (Ema, 2007)
Estimating Dynamic Models of Imperfect Competition

So what does BBL do?

Extends HMSS to games
Generalizes the idea to continuous actions
Proposes an inequality conditions for estimation (Bounds
estimator)

The key element of BBL is that it (like AM 2007) allows the
research to be agnostic about equilibrium selection

and side-step the multiple equilibria problem.
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Bajari, Benkard, and Levin (Ema, 2007)
Estimating Dynamic Models of Imperfect Competition

Notation

The game is in discrete time with an infinite horizon

There are N firms, denoted i = 1, ...,N making decisions at
times t = 1, 2, ...,∞
Conditions at time t are summarized by discrete states
st ∈ S ⊂ RL

Given st , firms choose actions simultaneously
Let ait ∈ Ai denote firm i’s action at time t, and
at = (a1t , ..., aNt ) the vector of time t actions
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Notation

Before choosing its action, each firm i receives a private shock
νit drawn iid from Gi (·|st ) with support Vi ⊂ RM

Denote the vector of private shocks νt = (ν1t , ..., νNt )

Firm i’s profits are given by πi (at , st , νit ) and firms share a
common (& known) discount factor β < 1

Given st , firm i’s expected profit (prior to seeing νit) is

E

[
∞

∑
τ=t

βτ−tπi (aτ, sτ, νiτ)|st

]

where the expectation is over current shocks and actions, as
well as future states, actions, and shocks.
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State Transitions & Equilibrium

st+1 is drawn from a probability distribution P (st+1|at , st )
They focus on pure strategy MPE

A Markov strategy is a function σi : S × Vi → Ai
A profile of Markov strategies is a vector, σ = (σ1, ..., σN ) ,
where σ : S × V1 × ...× VN → A

Given σ, firm i’s expected profit can then be written
recursively

Vi (s; σ) = Eν

[
πi (σ (s, ν) , s, νi ) + β

∫
V
(
s′; σ

)
dP
(
s′|σ (s, ν) , s

)
|s
]

The profile σ is a MPE if, given opponent profile σ−i , each
firm i prefers strategy σi to all other alternatives σ′i

Vi (s; σ) ≥ Vi
(
s; σ′i , σ−i

)
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Structural Parameters

The structural parameters of the model are the discount factor
β, the profit functions π1, ...,πN , the transition probabilities
P, and the distributions of private shocks G1, ...,GN .

Like AM, they treat β as known and estimate P directly from
the observed state transitions.

They assume the profits and shock distributions are known
functions of a parameter vector θ : πi (a, s, νi ; θ) and
Gi (νi |s, θ) .
The goal is to recover the true θ under the assumption that
the data are generated by a MPE.
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Example: Dynamic Oligopoly

Their main (novel) example is based on the EP framework.

Incumbent firms are heterogeneous, each described by its
state zit ∈ {1, 2, ..., z} ; potential entrants have zit = 0
Incumbents can make an investment Iit ≥ 0 to improve their
state

An incumbent firm i in period t earns

qit (pit −mc (qit , st ; µ))− C (Iit , νit ; ξ)

where pit is firm i’s price, qit = qi (st ,pt ;λ) is quantity,
mc (·) is marginal cost, and νit is a shock to the cost of
investment.

C (Iit , νit ; ξ) is the cost of investment.
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Example: Dynamic Oligopoly

Competition is assumed to be static Nash in prices.

Firms can also enter and exit.

Exitors receive φ and entrants pay νet , an iid draw from Ge
In equilibrium, incumbents make investment and exit decisions
to maximize expected profits.

Each incumbent i uses an investment strategy Ii (s, νi ) and
exit strategy χi (s, νi ) chosen to maximize expected profits.
Entrants follow a strategy χe (s, νe ) that calls for them to
enter if the expected profit from doing so exceeds its entry
cost.
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First Stage Estimation

The goal of the first stage is to estimate the state transition
probabilities P(s′|a, s) and equilibrium policy functions σ(s, ν)
The second stage will use the equilibrium conditions from
above to estimate the structural parameters θ

In order to obtain consistent first stage estimates, they must
assume that the data are generated by a single MPE profile σ

This assumption has a lot of bite if the data come from
multiple markets

It’s quite weak if the data come from only a single market
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First Stage Estimation

Stage “0”:

The static payoff function will typically be estimated “off line”
in a 0th stage (e.g. BLP, Olley-Pakes)

Stage 1:

It’s usually fairly straightforward to run the first stage: just
“regress”actions on states in a “flexible manner”.
Since these are not structural objects, you should be as flexible
as possible. Why?
Of course, if s is big, you may have to be very parametric here
(i.e. OLS regressions and probits).

In this case, your second stage estimates will be inconsistent...

Continuous actions are especially tricky (hard to be
nonparametric here)
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Estimating the Value Functions

After estimating policy functions, firm’s value functions are
estimated by forward simulation.

Let Vi (s, σ; θ) denote the value function of firm i at state s
assuming firm i follows the Markov strategy σi and rival firms
follow σ−i

Then

Vi (s, σ; θ) = E

[
∞

∑
0=t

βtπi (σ (st , νt ) , st , νit ; θ)|s0 = s; θ
]

where the expectation is over current and future values of st
and νt

Given a first-stage estimate P̂ of the transition probabilities,
we can simulate the value function Vi (s, σ; θ) for any strategy
profile σ and parameter vector θ.
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Estimating the Value Functions

A single simulated path of play can be obtained as follows:

1 Starting at state s0 = s, draw private shocks νi0 from
Gi (·|s0, θ) for each firm i .

2 Calculate the specified action ai0 = σi (s0, νi0) for each firm i ,
and the resulting profits πi (a0, s0, νi0; θ)

3 Draw a new state s1 using the estimated transition
probabilities P̂ (·|a0, s0)

4 Repeat steps 1-3 for T periods or until each firm reaches a
terminal state with known payoff (e.g. exits from the market)

Averaging firm i’s discounted sum of profits over many paths
yields an estimate V̂i (s, σ; θ) , which can be obtained for any
(σ, θ) pair, including both the “true”profile (which you
estimated in the first stage) and any alternative you care to
construct.
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Special Case of Linearity

Forward simulation yields a low cost estimate of the V’s for
different σ’s given θ, but the procedure must be repeated for
each candidate θ.

One case is simpler.

If the profit function is linear in the parameters θ so that

πi (a, s, νi ; θ) = ψi (a, s, νi ) · θ

we can then write the value function as

Vi (s, σ; θ) = E

[
∞

∑
t=0

βtψi (σ (st , νt ) , st , νit )|s0 = s
]
· θ =Wi (s; θ) · θ

In this case, for any strategy profile σ, the forward simulation
procedure only needs to be used once to construct each Wi .

You can then obtain Vi easily for any value of θ.
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Second Stage Estimation

The first stage yields estimates of the policy functions, state
transitions, and value functions.

The second stage uses the model’s equilibrium conditions

Vi (s; σi , σ−i ; θ) ≥ Vi
(
s; σ′i , σ−i ; θ

)
to recover the parameters θ that rationalize the strategy
profile σ observed in the data.

They show how to do so for both set and point identified
models

We will focus on the point identified case here.
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Second Stage Estimation

To see how the second stage works, define

g (x ; θ, α) = Vi (s; σi , σ−i ; θ, α)− Vi
(
s; σ′i , σ−i ; θ, α

)
where x ∈ X indexes the equilibrium conditions and α
represents the first-stage parameter vector.

The inequality defined by x is satisfied at θ, α if g (x ; θ, α) ≥ 0
Define the function

Q (θ, α) ≡
∫
(min {g (x ; θ, α) , 0})2 dH(x)

where H is a distribution over the set X of inequalities.
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Second Stage Estimation

The true parameter vector θ0 satisfies

Q (θ0, α0) = 0 = min
θ∈Θ

Q(θ, α0)

so we can estimate θ by minimizing the sample analog of
Q(θ, α0)

The most straightforward way to do this is to draw firms and
states at random and consider alternative policies σ′i that are
slight perturbations of the estimated policies.
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Second Stage Estimation

We can then use the above forward simulation procedure to
construct analogues of each of the Vi terms and construct

Q (θ, α) ≡ 1
nI

nI

∑
k=1

(min {ĝ (Xk ; θ, α) , 0})2

How? By drawing nI different alternative policies, computing
their values, finding the difference versus the optimal policy
payoff, and using an MD procedure to estimate the
parameters that minimize these profitable deviations.

Their estimator minimizes the objective function at α = α̂n

θ = argmin
θ∈Θ

Qn (θ, α̂n)

See the paper for the technical details.
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Example: Dynamic Oligopoly

Let’s see how they estimate the EP model.

First, they have to choose some parameterizations.

They assume a logit demand system for the product market.

There are M consumers with consumer r deriving utility Uri
from good i

Uri = γ0 ln(zi ) + γ1 ln (yr − pi ) + εri

where zi is the quality of firm i , pi is firm i’s price, yr is
income, and εri is an iid logit error

All firms have identical constant marginal costs of production

mc(qi ; µ) = µ
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Example: Dynamic Oligopoly

Each period, firms choose investment levels Iit ∈ R+ to
increase their quality in the next period.

Firm i’s investment is successful with probability

ρIit
(1+ ρIit )

in which case quality increases by one, otherwise it doesn’t
change.

There is also an outside good, whose quality moves up by one
with probability δ each period.

Firm i’s cost of investment is

C (Ii ) = ξ · Ii

so there is no shock to investment (it’s deterministic)
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Example: Dynamic Oligopoly

The scrap value φ is constant and equal for all firms.

Each period, the potential entrant draws a private entry cost
νet from a uniform distribution on

[
νL, νH

]
The state variable st = (Nt , z1t , ..., zNt , zout ,t ) includes the
number of incumbent firms and current product qualities.

The model parameters are γ0,γ1, µ, ξ, φ, ν
L, νH , ρ, δ, β, & y

They assume that β & y are known, ρ & δ are transition
parameters estimated in a first stage, γ0,γ1, & µ are demand
parameters (also estimated in a first stage), so the main
(dynamic) parameters are simply θ =

(
ξ, φ, νL, νH

)
Due to the computational burden of the PM algorithm, they
consider a setting in which only ≤ 3 firms can be active.
They generated datasets of length 100-400 periods using PM.
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Example: Dynamic Oligopoly

Here are the parameters they use.
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Example: Dynamic Oligopoly

The first stage requires estimation of the state transitions and
policy functions (as well as the demand and mc parameters).

For the state transitions, they used the observed investment
levels and qualities to estimate ρ and δ by MLE.

They estimated the demand parameters by MLE as well, using
quantity, price, and quality data.

They recover µ from the static mark-up formula.

They used local linear regressions with a normal kernel to
estimate the investment, entry, and exit policies.
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Example: Dynamic Oligopoly

Given strategy profile σ = (I ,χ,χe ), the incumbent value
function is

Vi (s; σ) = W 1 (s; σ) +W 2 (s; σ) · ξ +W 3 (s; σ) · φ

= E

[
∞

∑
t=0

βt π̃i (st )|s = s0

]
− E

[
∞

∑
t=0

βt Ii (st )|s = s0

]
· ξ

+E

[
∞

∑
t=0

βtχi (st )|s = s0

]
· φ

where the first term π̃i (st ) is the static profit of incumbent i
given state st
The 2nd term is the expected PV of investment

The 3rd term is the expected PV of the scrap value earned
upon exit.
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Example: Dynamic Oligopoly

To apply the MD estimator, they constructed alternative
investment and exit policies by drawing a mean zero normal
error and adding it to the estimated first stage investment and
exit policies.

They used ns = 2000 simulation paths, each having length at
most 80, to compute the PV W 1,W 2,W 3 terms for these
alternative policies.

They can then estimate ξ & φ using their MD procedure.

It’s also straightforward to estimate the entry cost distribution
(parametrically or non-parametrically) - see the paper for
details.
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Example: Dynamic Oligopoly

Truth: ξ = 1 & φ = 6

For small sample sizes, there is a slight bias in the estimates
of the exit value.

Investment cost parameters are spot on.
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Example: Dynamic Oligopoly

Truth: ξ = 1, φ = 6, νl = 7, & νh = 11

The subsampled standard errors are on average slightly
smaller than the true SEs.

This is likely due to small sample sizes.
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Example: Dynamic Oligopoly

The entry cost distribution is recovered quite well, despite
small sample size (and few entry events).
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Conclusions

Both AM & BBL are based on the same underlying idea (CCP
estimation)

As such, it’s quite possible to mix and match from the two
approaches

e.g. forward simulate the CV terms and use a MNL likelihood

We have found AM-style approaches easier to implement, but
that might be idiosyncratic.

Applications in marketing are growing: Goettler and Gordon
(2012), Ellickson, Misra, Nair (2012), Misra and Nair (2011),
Chung et al. (2012) ...

If you are interested in applying this stuff, you should read
everything you can get your hands on!
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